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A slender ship moving at a near-critical speed in a 
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The problem solved concerns a slender ship moving at a near-critical steady speed in 
a shallow channel, not necessarily in symmetric configuration, involving the special 
phenomenon of generation of solitary waves. By using the technique of matched 
asymptotic expansions along with nonlinear shallow-water wave theory, the problem 
is reduced to a Kadomtsev-Petviashvili equation in the far field, matched with a near- 
field solution obtained by an improved slender-body theory, taking the local wave 
elevation and longitudinal disturbance velocity into account. The ship can be either 
fixed or free to squat. Besides wave pattern and wave resistance, the hydrodynamic lift 
force and trim moment are calculated by pressure integration in the fixed-hull case; 
running sinkage and trim, by condition of hydrodynamic equilibrium in the free-hull 
case. The numerical procedure for solving the KP equation consists of a finite- 
difference method, namely, fractional step algorithm with Crank-Nicolson-like 
schemes in each half step. Calculated results are compared with several published ship- 
model experiments and other theoretical predictions ; satisfactory agreement is 
demonstrated. 

1. Introduction 
It was observed in several early studies (e.g. Thews & Landweber 1935, 1936; 

Kinoshita 1946; Graff 1962; Graff, Kracht & Weinblum 1964) that, surprisingly, the 
flow around a steadily towed ship model does not attain a steady state even in a long 
tank if the constant towing speed U* lies near the natural speed of a long wave, i.e. so- 
called critical speed, (g*h*)1/2, where g* is the acceleration due to gravity and h* is the 
still water depth. Recent towing tank experiments (Huang, Sibul & Wehausen 1983; 
Ertekin, Webster & Wehausen 1985) show that instead of reaching the expected steady 
state the ship model generates periodic solitary waves in front of itself, which travel a 
bit faster than the model. Consequently, the hydrodynamic forces acting on the model, 
namely, resistance, lift and trim moment also vary periodically, resulting in a periodic 
heave and pitch motion if these two modes are free. 

The recent theoretical interest and a new understanding of the problem stem from 
the work of Wu & Wu (1982), who used one-dimensional Boussinesq equations to 
study a pressure patch moving on the free surface at a near-critical speed and found 
upstream solitons emitted periodically. Since then various investigations have followed. 
Calculations for a surface pressure or bottom disturbance were performed by Ertekin 
(1984) and Ertekin et al. (1985, 1986) using Green-Naghdi’s directed-sheet model; by 
Akylas (1984) and Cole (1985) using Korteweg-de Vries equation with a forcing term; 
by Katsis & Akylas (1987) using Kadomtsev-Petviashvili equation; and so on. All 
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yield qualitatively similar results. Subsequently, this problem was analysed by 
Grimshaw & Smyth (1986) and Smyth (1986) applying the modulation theory of 
Whitham (1974). A preliminary study was also made by Wu (1987) who approximately 
analysed the forced KdV equation to ascertain the mechanism underlying the 
phenomenon. 

For a real ship problem, unlike other kinds of disturbance, its three-dimensional 
geometry must be taken into account. Mei (1986) derived an inhomogeneous KdV 
equation with matched asymptotic expansions to analyse a slender ship hull and 
obtained solitary waves propagating upstream. Mei & Choi (1987) further developed 
the above theory to calculate hydrodynamic forces on the ship, but only crude 
agreement with experiment was obtained because this theory cannot predict two- 
dimensional waves in the wake. Choi & Mei (1989) improved their theoretical model 
by using a KP equation in the far field to take account of the two-dimensional effect. 
More numerical results were reported in Choi et al. (1990) based on the classical 
Hamilton’s principle together with another finite-element method for numerical 
calculation. It seems to us that this approach is worth pursuing further, but it should 
be improved by taking the actual submerged cross-sectional area of the ship and other 
higher-order effects in the near field into account. Moreover, it can be extended to the 
asymmetric case, allowing determination of side force and yaw moment on a ship 
moving in a canal on an off-centre track or at a slight angle of yaw. 

From an applications point of view, with recently increasing interest in fast inland 
and coastal ships, the demand for clarifying shallow and restricted water effects on 
ships is stronger than ever before. As described in many papers (e.g. Graff et al. 1964; 
Dand 1973), the wave resistance of a ship increases steeply with speed as it approaches 
the critical Froude number, reaching a maximum value at a near-critical speed still in 
the subcritical range. Meanwhile, the squat phenomenon takes place so that the ship 
may touch ground. Beyond that point the wave resistance first decreases and then 
increases again slowly. Tuck (1966) developed a technique of matched asymptotic 
expansions based on linearized shallow-water wave theory to construct an approximate 
solution. This approximation gives fair results for ship squat at depth Froude numbers 
not close to unity but is singular and therefore invalid near F,, = 1. The linearized 
theory fails to predict wave resistance in this transcritical range not only because the 
wave amplitude is no longer small but also because it cannot predict the nonlinear 
phenomenon of periodic bifurcation from a steady state. Some attempts based on 
nonlinear theory were undertaken by Lea & Feldman (1 972) and Mei (1976) for the 
same case but still pursuing a steady state solution. 

Here it seems appropriate to insert a comment on slender-body theory in shallow 
water. Almost all previous investigators (Tuck 1966; Lea & Feldman 1972; Mei 1976, 
1986; Choi & Mei 1989) who used matched asymptotic expansions in conjunction 
with linear or nonlinear shallow-water wave theory, applied the lowest-order slender- 
body theory in the near field, i.e. approximated the free surface around the ship by a 
rigid wall at z = 0 and the longitudinal flow past the body by the uniform parallel 
inflow. Then the flux to the outer flow is simply proportional to the local slope of the 
still-water cross-sectional area. However, some investigators (Ogilvie 1976; Maruo 
1989) recognized that this original slender-body theory in deep water neglects two not- 
so-small effects : (i) interaction between waves generated at different cross-sections; (ii) 
longitudinal perturbation velocity in the linearized body boundary condition. Maruo 
(1989) improved the slender-body theory by a rational perturbation analysis and 
apparently including the above two effects obtained somewhat better results for wave 
resistance and wave elevation than the older theory. Following these suggestions, we 
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also account for these two effects in our slender-body approximation in the near field 
and believe this to be consistent with the nonlinear shallow-water wave theory in the 
far field. In contrast to the far-field problem, there is no resonant point in the near-field 
problem, i.e. no mathematical singularity. We can just apply the regular perturbation 
method there. So if we want to obtain the same accuracy in the near-field as in the far- 
field nonlinear theory, the near-field solution must contain terms of different orders. 
Consequently, there are higher-order terms in the matching condition. 

This paper is aimed at developing a practical and efficient calculation method by 
further exploiting the idea proposed by Choi & Mei ( 1  989). Considering a ship moving 
at a near-critical speed parallel to the sidewalls but not necessarily in the centreplane 
of a shallow rectangular channel, using the technique of matched asymptotic 
expansions along with nonlinear shallow-water wave theory, we reduce the problem to 
a KP equation in the far field, matched with a near-field solution obtained by improved 
slender-body theory of higher-order precision, taking account of local wave elevation 
and longitudinal disturbance velocity. The KP equation is solved numerically by a 
finite-difference method, namely, the fractional step algorithm with Crank-Nicolson- 
like schemes in each half step. The generated waves and associated hydrodynamic 
forces on the ship, namely, wave resistance, lift force and trim moment, are calculated. 
If the ship model is free to heave and pitch, the running sinkage and trim of the ship 
are obtained at each timestep from the condition of quasi-steady hydrodynamic 
equilibrium, i.e. zero net lift-force and trim-moment ignoring inertial effects. 
Exemplary results for three hull forms, namely, Series 60 C, = 0.8, Taylor Standard 
Series and Wigley model, are presented along with corresponding results from 
published experiments (Graff et al. 1964; Ertekin et al. 1985; Millward & Bevan 1986) 
and theoretical predictions (Choi e f  al. 1990; Millward & Bevan 1986). Satisfactory 
agreement between the experiments and our calculations is demonstrated. It is inferred 
that the method based on nonlinear shallow-water wave theory holds enough precision 
for the practical ship problem if certain higher-order effects in the near field are taken 
into account. 

2. Formulation 
2.1. General description of the problem 

We consider asymptotically a slender ship of length I*, beam b,* and draft d* moving 
along the x*-direction in a shallow channel of depth h* and width w* at a near-critical 
speed U*. The flow is assumed to be irrotational and incompressible; the ship, free only 
to heave and pitch. We start with dimensional variables marked by asterisks and 
will later change to unmarked non-dimensional variables. A Cartesian coordinate 
system Ox*y*z* moving at the same speed as the ship is used with origin 0 located in 
the midship section, plane Ox*y* on the quiet free surface, plane O.x*z* as longitudinal 
ship centreplane, z* positive upward, and x* positive forward. The flow is then exactly 
governed by the Laplace equation in the fluid domain, 

by the kinematic and dynamic conditions on the free surface, 
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a$* a$* 
-- at* ax 

u * ~ + ; p * $ * 1 2 + g * z *  = 0 (z* = r), 
and by the boundary conditions on the channel bottom, 

- 0 (z* = -h*), a$* 
az* 
-- 

on the channel sidewalls, 

-- " * - 0  @*=-hw*and(l-h)w*),  
aY * 

(3) 

and on the ship hull, 

(6) 

where q5* is the disturbance velocity potential of fluid, is the elevation of free surface, 
and h is a symmetry parameter having positive real values less than one; if h = i, we 
have the standard case of a ship moving in the centreplane of the channel. It is assumed 
that the fluid was initially at rest, so the initial condition is 

aF aF at*- U * T + V * $ *  * V*F = 0 ( F ( x * , ~ * , z * ,  t * )  = 0), 
ax 

$* = 0, p = 0 (t* = O), (7) 

V*$* -+ 0 (x* + f 03). (8) 

and the radiation condition is 

However, this latter condition must be modified in actual computation, specially for 
the downstream boundary, because the computational domain must be finite. 

The pressure p* is expressed by Bernoulli's equation, 

where p* is the density of the fluid. The resulting forces and moments acting on the ship 
are given by 

p*n, dS*, F: = -1 p*nr dS*, 
Jstt,p*nzdS*, s w  

q = -  = - 

p*(y*n, - z*n,) dS*, M,* = - p*(z*n, - x*n,) dS*, 

= -I p*(x*n,-y*n,) dS*, 
s w  

where S,  denotes the actual wetted surface of the hull and n = (n,,n,,n,) is the hull- 
outward normal unit vector on the surface &,. 

If the ship is free to heave and pitch, the motions in these two degrees of freedom 
are governed by the usual momentum equations. Assuming very slow motions, the 
inertial terms can be neglected so the momentum equations become simple equilibrium 
conditions. These are used to determine the running sinkage and trim at every timestep 
later on in this paper. 
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2.2. Scale analysis 
We analyse the problem by the technique of matched asymptotic expansions. A key 
step in it is scale analysis, i.e. selection of small parameters and suitable scales. As the 
ship considered here is slender, a slenderness parameter is defined as 

r,* 6 = - < O(l), r t  = (S,*)”’, I* 

where S,* is the midship section area. If the ship generates 
shallow-water waves, we have 

(11) 

only weakly nonlinear 

where A* and L* are the characteristic wave amplitude and length, respectively. A* or 
E can be determined by the ship hull boundary condition or by the matching condition 
to follow later. We select here E = p2, which implies that both nonlinearity and 
dispersion of the wave will be included in the theory. However, this is not a serious 
restriction, because the theory can automatically adjust both effects and is valid even 
when the actual ratio E/p2 is much greater or smaller than one, as long as both of them 
are small. Moreover, the ship length I* may be of the same order as L*. 

Using the concept of matched asymptotics, we now divided the flow region into two 
parts, namely, near field and far field, meaning the fields near and far away from the 
ship, respectively. In the near field the typical lengthscale for transverse directions y 
and z is r: and for longitudinal direction x it is I * .  On the other hand, in the far field 
the typical lengthscale for horizontal directions x and y is L* and for vertical direction 
z it is h*. The timescale, which is the same in both fields, must be determined by the 
shallow-water wave theory itself; in fact, it is of the order of the period of the wave 
generated by the ship or of the ship motion caused by the wave. Based on these scales, 
we can separately formulate equations with multiple-scale expansions for each field 
and then match them with each other asymptotically. 

2.3. The f a r j e l d  
In the far field, upon introducing the normalization 

and the following standard shallow-water expansion of (1H4) without considering the 
ship hull boundary condition (6) ,  

€ &2 
$(x, Y ,  Z, t )  = ~ o ( ~ ,  y ,  t )  - - ( z  + 1)’ v2$,(x, Y ,  t )  + 4! ( z  + 1 )4V4$0(x, Y ,  t )  + . . . (14) 2! 

in terms of the depth-averaged potential 
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we obtain the Boussinesq equations, 
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c t - & h c ~ + ~ ' [ ( ~ + ~ ~ ~ V p ? ]  = O ,  (16) 

vt - < t I ~ ~ q , , + & E ( ~ d ~ + c  = $ E v 2 ( v t - e ! h ( $ ) x ) ,  (17) 

p = eg-:+f2[(1+@2-(1 +Z)"VV"~+O(2) .  (18) 

F,,L = 1 +a€, a - O(1). (19) 

and the expression for pressure, 

We further restrict the problem to the near-critical case, i.e. depth Froude number 

In this case, the phase speed of waves generated is near the critical speed and the phase 
lines of the waves are almost perpendicular to the ship centreline, which means the 
waves fluctuate more slowly with time relative to an observer in the moving coordinate 
system and more gently in the y-direction than in the x-direction. So we renormalize 

7 = E t ,  Y = P y ,  (20) 

U , - - u , ~ + ~ u u q , , + ~ e , h u , , , + ~ ~ , , ,  = 0, 14 = Q?,, (21) 

and in terms of the new variables we get the simpler KP equation, 

where u is also the first-order approximation of the free-surface elevation 5. The 
channel sidewall boundary condition becomes 

pu = 0 ( Y  = -hsw*/h* and (1 -h)cw*/h*).  (22) 

(23) 

The free-surface elevation itself is expressed as 

5 = <ah Vp?k - VT - &??: - iEch Vp?x.zr + o(E2)*  

2.4. The nearjeld 
In the near field, upon introducing the normalization 

we can get from (1)-(4) and (6), 

- _  c7J - O(t.6) (f = 6, 

- _  24 - 0  (i= -i), 

a2 

21 



A slender ship moving in a shallow channel 269 

where ĥ  = h*/r,*. In (25) we have used the matching condition of longitudinal velocity 
a $ / a i  = el/zl*/h*(&p/ax) I1,,o+ O ( ~ ~ / ~ l * / h * )  and continuity of wave elevation cly+o = 
(r,*/eh*) ( I J . - ,  in advance. There is a formal solution for these linear equations, 

r* 
h 

+ E V ( i ,  7) $3(i, P,f) ++Lo(-% 71, (29) 

where V is the fluid velocity of cross-flow and& a constant solution, both of which will 
be determined by matching with the far-field solution, and i,k2 are particular 
solutions, and $3 is a homogeneous solution, all of Laplace's equation, governed, 
respectively, by 

We d not need to find their exact solutions, but we must have their asymptotic ature 
in order to match them with the far field. By applying the law of mass conservation to 
a transverse fluid element surrounded by the hull surface, free surface, channel bottom 
and a control surface located far away from the ship but still within the near field, we 
have 

where uo = uly-o = p ) z l y = o  and ,$(<a, t )  = S*( i ,  t ) / S t  for -a < i < is the actual time- 
dependent underwater cross-sectional area of the ship. Further, for the cross-flow we 
obtain analytically 

lim $3(3, 1) = j C(i ) ,  (34) 
6-k.C 

where C(f) is called the blockage coefficient of such a section and can be calculated, 
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e.g. by a boundary-element method (Newman 1969; Taylor 1973). However, for the 
symmetric case, we need not calculate it because there is no cross-flow at all, i.e. V = 0 
in (29). Substituting (33) and (34) into (29) yields 

Invoking (9), the pressure distribution in the near field can be expressed with 
sufficient precision as 

From the estimate, 

we can see that 4, and & are small and of same order as E. So if h*’/S,* is not large, 
the terms involving & and ii can be omitted in the above pressure expression. 

2.5. Matching conditions 
According to the principle of matched asymptotics, i.e. the expansion of the far field 
to the near field must be equal to the expansion of the near field to the far field, we 
establish the matching conditions from (35) as follows: 

I* 
(37) t S I Y + O  = (rg*/eh) SIJ,,, $= IY.*O = h*&’ l,+m 

(39) 

~ l Y - o + + $ l u - o -  = 2f,. (40) 

ro* 
$ l y - o + - $ l y 4 -  = 2VCE-7 h* 

Substituting V from (39) into (38) will yield a single boundary condition for the far- 
field KP equation. However, if the problem is symmetric about the x-axis, we can 
simply set V = 0 in (38). Owing to normalization of (38) we have an important relation, 

which means that E is not only related to the slenderness 6 but also to the ratio of 
ship length to water depth. Compared with Choi & Mei (1989) who assumed r,*/h* = 

Oh) ,  no such restriction is introduced here, i.e. r,*/h* may be from O ( E ” ~ )  up to O( 1). 
Mei ( 1976) extensively discussed different combinations of smallness parameters of 
waves and ships (or struts). The case of O(E’/’) < r,*/h* < O( 1) corresponds to his cases 
from medium-amplitude waves to large-amplitude waves or in his words to a ‘thick’ 
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strut. This is a very practical range for many types of ship such as aircraft carriers, 
passenger ships and fast cargo ships which can attain near-critical speeds and even 
exceed the critical speed. 

As a consequence of our higher-order approximation in the near field, the 
instantaneous underwater cross-sectional area 9 should include effects of running 
sinkage, trim and wave elevation. If the ship sidewalls are nearly vertical or sinkage, 
trim and wave elevation are relatively small, the required cross-sectional area can be 
expressed approximately as 

1 S(i, 7 )  = S,($ (47) - fO(7) )  + ec0(i ,  7 )  , (42 1 

where s and 6 denote sinkage and trim, c0 denotes wave elevation at ship sidewall, and 
Ss(-f) is the still-water cross-sectional area distribution. 

It is evident that (38) involves two types of nonlinearity: one of relative order 
amplitude/draught, say, that is contained in 3 and the other of order amplitude/depth 
appearing through the factor E U ~ .  The first nonlinearity is stronger than the second, 
which is of the same order as that included in the KP equation in the far field. Equation 
(38) can be reduced to the classic matching condition (drp/c?Y) IY+,,t = TLF 2 nh(d/di2)S.v 
by neglecting terms with factor E and putting C' = 0. This was widely used in previous 
applications of slender-body theory. It is clear that this classic approach does not 
account for the full interaction between the near and far fields. It includes the effect of 
the body (near field) on the waves (far field), but not that of the waves on the body. 
The present matching condition (38) does reflect such interaction. The far-field solution 
is incorporated into the near-field solution (38) and (42) so that the waves or flows 
generated by each section in the near-field will interact mutually through the far-field 
solution. 

We cannot extend the calculation region wide enough downstream to ensure that the 
water there is still undisturbed but we can move the downstream boundary far enough 
so that the waves there are almost propagating in the negative x-direction and are not 
as strong as those around the ship. Hence, an outward radiation condition can be 
imposed there, 

au  214 
a7 2 s  
--c- - = o  (c-x > 0). (43) 

Here C-, is the phase speed of downstream waves which, exactly speaking, is a 
function of Y and time, to be determined approximately by the numerical procedure 
itself. However, theoretically C-, + 0 as 7 + + 00, as the wave in the wake will tend to 
become stationary in the moving frame. On the other hand, we can select the upstream 
region big enough so that the condition of no disturbance is still valid at the boundary. 

rpz = 0, cp = 0 (.u-++0O). (44) 

p = E [ 1 , . - " - Z + O ( $ ) ,  (45) 

From (36) with (37) and (23) the pressure on the ship hull can be expressed 
approximately as, 

in conformity with (18). 

2.6. Handling n blunt how or stern 
We have seen in $2.4 that our slender-body theory in the near field even includes certain 
three-dimensional effects, so the requirement of slenderness is quite weak. However, if 
the bow or stern of the ship is not sharp enough, we must modify the theory. Based on 
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the idea that a point source at the bow or a sink at the stern will affect the far field in 
all directions rather than in the transverse direction only as in (38), we can move the 
source singularity at a blunt bow or stern from the matching condition (38) to the 
forcing term in the governing KP equation heuristically, yielding 

(46) u, - au, + $zd, + Q.F;,,, u, ,~ ,  + $p,py = aQ6(x - xo) 6( Y ) ,  

.c"-b, 1 d -  ,1/21* 

[S(F,,-EU,)]-~.~, Q =-J. -- 1 + EU, d i  h* (47) 

where 6(x) is Dirac function, xo is x-coordinate at the bow and 6, is a small parameter 
that is a measure of bluntness of the bow. We see that in (47) only the bow singularity 
is included. Although the stern singularity could also be included in the same way, we 
neglect it because in real flow the viscous wake will damp or distort the effect of the 
stern singularity. For a not very blunt but no longer sharp bow, we can separate a 
fraction of Q from (38) to add into (21), and still retain the rest in (38). The fraction 
is related to the bluntness of the bow but it is selected somewhat artificially. We use this 
technique only for the Series 60, C, = 0.8 model. There is no difficulty in realizing this 
process of dealing with a blunt bow in the numerical technique implemented. 

2.7. Hydrodynamic forces on the ship 
For the longitudinal and vertical forces F,*, F: and moment My*, we can integrate (10) 
directly by substituting (45) into it. Conventionally, instead of F,*, F: and M,*, we want 
to know wave resistance R:,, lift force F,* and trim moment M ;  about the centre of 
gravity G with defined bow-up positive direction, which are written as 

R:, = -F: ,  F,* = F:-m*g*, M $  = -M,*-F:xt+F,*zE, (49) 

where nz* is the mass of the ship, and xg and zg are x* and z* coordinates of the centre 
of gravity G in Ox*y*z*. They are non-dimensionalized as 

Carefully calculating the expression for R,,, we get 

where 
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Here, C, = V,*/S,* I* is the longitudinal prismatic coefficient, V,* is static displacement 
volume of the ship, [,, = [I1.-,, 1, is the wetted girth of each cross-section, s = s*/l* 
is sinkage, and 8 is the trim angle. We can also obtain expressions for lift force and trim 
moment, 

y+ - (S  - 20) b(2) d f ,  1 FL = -[I2 eh* [ '* 
CBd* -112 sh* 

xF 1 I* 
MT =-("2 sh* [ [ + - ( s - i s )  I* b( .?)(-- i )di-F -, 

CBs* sh* 

(54) 

(55 )  

where the contribution of forces in the x-direction to the trim moment is neglected and 
C, = V,*/(l*b,*d*) is the block coefficient of the ship. 

2.8. Sinkage and trim 
For a ship free to heave and pitch, assuming sinkage and trim to vary slowly with time 
the inertial force and moment are accordingly small. So we can omit them and then the 
quasi-steady hydrodynamic equilibrium requires just FL = 0 and MT = 0, i.e. zero lift- 
force and trim-moment, which yields 

(57) 1 / ~ ~ 2 [ ~ + E I I * ( s - 2 8 )  I* b ( i ) ( - i ) d i  = 0. 

The above two equations constitute linear algebraic equations for s and 8 and are easy 
to solve. 

For the lateral force and yaw moment, we cannot use the mean pressure expression 
(49, but we could use the law of conservation of momentum in lateral direction in the 
near field to get them. Because we only treat the symmetric case in the following 
numerical examples, we do not pursue this matter here. 

3. Finite difference schemes for the KP equation 
Finding a numerical technique for solving the KP equation (2) is not a trivial task. 

We present here a set of efficient and precise finite-difference schemes using the 
fractional step algorithm (Yanenko 1971). A similar technique was successfully applied 
by Chen & Liu (1988) to solve the KP equation for the problem of diffraction of a 
solitary wave by a thin wedge. 

Define a net function as 

cpz = q(i Ax, ( j  - sign ( j ) )  A Y,  n A7), 

for i = - I .  mtn, . . . , Imazr j = - Jnlin,. . . , J,,, + 1, n = 0,. . . , N . )  
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where 

X . - N .  Cheri arid S .  D. Shnrma 

0, j d 0, 

1, j > O ,  
sign ( j )  = 

cp(i, 0 ,n)  = l l . - " -  and cp(i, 1. n )  = p. I1.=,,t at the ship location i = - I s h i p , .  . . , Z s h l p ,  
elsewhere ~ ( i ,  0, n )  = cp(i, 1, n )  = l l . = " .  The other variables, e.g. u, also have similarly 
defined net functions. 

The KP equation (21) is solved numerically by a fractional step algorithm which 
separates (21) into two parts, U , - ~ U , + ~ U U , . + ~ ~ ~ U , ~ , ~ ,  = 0 and U , + & I ~ ~  = 0, at two 
half-steps. For each of them, the Crank-Nicolson type schemes are constructed, which 
are implicit, energy conservative and of second-order precision. For the first half-step, 
we have 

+- F n h  [(Ci+2-2zif+l + 2 C f - ] - C i + J  
24( A X ) ~  

+ ( U ~ ~ , - ~ ~ U ~ + , + ~ U ~ ~ ~ - Z ~ ~ ~ ~ ) ]  = 0 for i = - I m l l L + 2 ,  ..., Z,,,,-2, (59)  

where subscript j is omitted above as well as in the following formulae in this paragraph 
for the sake of convenience, and zi is an intermediate value of u. The above scheme 
needs two-line complementary boundary conditions at the upstream and downstream 
ends. So it needs to be modified at the first inner line of the downstream end and must 
also be calculated together with the upstream and downstream boundary conditions, 
i.e. radiation conditions at both ends of (43) and (44). Thus we put 
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where 

f - i  

The scheme (63) should be calculated together with the boundary conditions at the cut 
of the ship location and the sidewalls of the channel. Owing to the matching conditions 
(38) and (39) at the cut of the ship location ( - Iship  < i < Iship), we get 

and for the channel sidewall condition (22) we have simply 

u:::~ = u?;!~ ( j  = - Jmin, J,,, + 1). (66) 
The scheme (63) with (64), (65) and (66) proceeds in the sequence of decreasing i, i.e. 
from the upstream end i = Z,,, to the downstream end i = - Zmtn. It is easy to see that 
(59) +(63) is consistent with the original KP equation (21) to second-order precision 
in AT. 

The numerical procedure is carried out step by step with increasing timestep n. When 
n = 0, all u and q~ are zero as determined by initial condition (7). At step n+ 1, uzfj is 
already known and the unknown u?T1 is obtained in two half-steps. In the first half- 
step, for anyj, (59) along with boundary conditions (60), (61) and (62) constitute linear 
algebraic equations of a quin-diagonal matrix for the intermediate value fit,j, which can 
be solved by an extended double sweep method for the quin-diagonal matrix. In the 
other half-step, for any i, (63) along with boundary conditions (64), (65) and (66) 
constitute linear algebraic equations of a tri-diagonal matrix for u;;l, which can be 
solved by a double sweep method for the tri-diagonal matrix. Repeating the above 
procedure, all uTj (n = 0,. . . , N )  are determined. 

The nonlinearity of the equation and the boundary conditions will generally cause 
numerical instability. A rigorous analysis of this kind of instability is almost 
impossible. So we construct and use this set of schemes in the sense of an empirical 
numerical technique. In order to overcome the instability, we add very small artificial 
viscous effects of type vu,, and vuyy  in the radiation conditions at the ends and the 
matching conditions at the ship location. Even then, we still need to select suitable 
values of AT, Ax  and A Y  to avoid instability. 
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FIGURE 1. Wave evolution for Series 60 model a t  the critical speed in case w* = 4.88 m where the 
viewed horizontal area is 17.1 x 4.88 m2 and the vertical scale is exaggerated 5 times. 

In the following numerical examples, we set AT = 0.01, Ax = s1/2~*/(h*2Zs,,,), 
Iship  = 10-20, A Y = ew*/h*(J,,, + Jmaz), the radiation boundary is located far away 
from the ship at a distance of 2&40 times the ship length, and v is about 0.05. For 
example, in the calculation of Series 60, C ,  = 0.8 model for the case of Ertekin et al. 
(1984), we set AT = 0.01, Ax = 0.107229 and A Y  = 0.091072. Choi & Mei (1989) and 
Choi et al. (1990) used an explicit scheme of Katsis & Akylas (1987), they selected 
AT = 0.00002, A x  = 0.1 and A Y  = 0.1 for the same case. Although our schemes are 
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A*/h* 

F,, = 0.9 

c,, = 1.0 

F,, = 1 . 1  

U*T*/h* 

F,, = 0.9 

F,, = 1.0 

F,, = 1 . 1  

Choi’s KP 
Our KP 
EXP 
Choi’s KP 
Our KP 
EXP 
Choi’s KP 
Our KP 
EXP 

Choi’s KP 
Our KP 
EXP 
Choi’s KP 
Our KP 
EXP 
Choi’s KP 
Our KP 
EXP 

(a) Amplitude 
w* = 1.22 m w* = 2.44 m w* = 4.88 m 

0.480 0.3 15 0.202 
0.403 0.274 0.163 
0.367 0.273 0.143 
0.623 0.445 0.322 
0.580 0.436 0.319 
0.551 0.438 0.303 
0.785 0.625 0.490 
0.769 0.624 0.496 
0.608 0.585 0.480 

( b )  Period 

MI* = 1.22 m w* = 2.44 m w* = 4.88 m 

20.04 31.83 41.26 
25.16 38.57 54.00 
32.70 48.10 65.10 
24.89 39.29 60.26 
29.54 46.02 7 1.74 
37.80 49.80 85.20 
33.14 54.75 90.78 
35.69 59.47 96.46 
39.00 50. I 1 103.60 

TABLE 1 .  The amplitude of the first soliton and the generation period between the first two 
solitons for the Series 60 model. 

implicit, the numerical task at each timestep is not much larger than that in explicit 
schemes. Because we have reduced the problem to two diagonal-matrix equations with 
the fractional step algorithm, the task of solving the equations is of the same order of 
magnitude as an explicit calculation. Even if we assume that our task at each step takes 
50 times as much CPU time as Choi & Mei (1989), our numerical technique is still 10 
times more efficient than theirs. 

4. Numerical examples 
We have calculated three ship models: Series 60, C, = 0.8 model, Taylor Standard 

Series model and Wigley mathematical model in the speed range of K h  = 0.88-1.12 
and all are symmetric cases. All examples are compared with existing experimental 
results and the cases of Series 60 model and Wigley model are also compared with 
previous calculations. 

4.1. Series 60 model 
To investigate the dynamic nature of solitary waves generated in front of the ship, we 
calculate the same cases as in the experiments of Ertekin er al. (1985) and the 
calculations of Choi er al. (1990), in which the towing mode was fixed and a Series 60 
model with C, = 0.8 was chosen. Its length, beam and draft are 1.52 m, 0.23 m and 
0.075 m, respectively. The water depth is 0.15 m and the three tank widths are 1.22 m, 
2.44 m and 4.88 m. First, we show perspective views of the wave pattern for the case 
of tank width 4.88 m and Fnh = 1 in figure 1 where the vertical displacement is 
exaggerated 5 times for clarity. Around the bow of the ship, the local wave builds up, 
forms a one-dimensional solitary wave and is emitted in front of the bow, going a bit 
faster than the ship. Further, the process is repeated periodically and the solitary waves 
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FIGURE 2. Calculated wave resistance, sinkage and trim as compared with Graff's experiments for 
h*/I* = 0.125: 0,  average calculated values; I, range of variation between minimum and maximum 
in the calculations; + , measured values. 

are generated continuously, which makes other variables, e.g. the hydrodynamic forces 
on the ship, also vary periodically with time. 

The amplitude of the first soliton and the generation period between the first two 
solitons are listed in table 1 together with calculated results of the KP model of Choi 
et al. (1990) and experimental measurements of Ertekin et al. (1984). Our values in 
almost all cases are closer to the experimental ones than Choi's. It is not surprising 
because the near-field approximation in our theory includes second-order terms that 
were omitted in Choi et al. (1990). Besides, we use the technique described in $2.6 to 
deal explicitly with the blunt bow, whereas portions of the bow and stern were slightly 
modified by a parabolic distribution in Choi et al. (1990). Since Series 60, C ,  = 0.8 
hullform is not very blunt at the bow, we separate one half of the source strength Q 
generated in the first discrete interval at the bow from (38) and enter it into (21) to get 
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FIGURE 3. Calculated wave resistance, sinkage and trim as compared with Grd's  experiments for 
h * l P  = 0.167. Key as figure 2. 

(46); the other half remains in (38). Numerical experiments show that the effect of the 
divided bow source on wave resistance, period and amplitude of the solitons is within 
5 % ,  but it affects the computational procedure in the favourable direction of 
numerical stability. We have also done calculations omitting the higher-order terms in 
boundary conditions (38) and without special handling of the bow, which means using 
the same boundary conditions as Choi et al. (1990) to solve the KP equation but by a 
different numerical method, and confirmed their results very closely. Since the 
amplitude of the solitons exceeds half the water depth, the KP equation is on the 
margin of its validity. One could possibly resort to shallow-water wave equations 
including even higher-order nonlinearities in the far field. Such effects have been 
studied, e.g. by Ertekin et al. (1986) based on the Green-Naghdi equations and by 
Tomasson & Melville (1991) using a suitable numerical technique to allow a cubic 
nonlinearity with application also to the two-fluid-layer flow problem. 
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FIGURE 4. Calculated wave resistance, sinkage and trim as compared with Graff’s experiments for 
h*/l* = 0.208. Key as figure 2. 

We can, of course, also get the wave resistance, lift force and trim moment for these 
cases, but we omit them here for the sake of brevity and because there are no 
corresponding experimental results to compare with. The reader is referred to the 
calculated results in figures 6-8 of Choi et al. (1990). 

4.2. Taylor standard series model 
The Taylor standard series model of C ,  = 0.64 with length I* = 3 m, beam b* = 
0.27845 m and draft d* = 0.0928 m was used in the systematic shallow-water model 
experiments by Graff et al. (1964) in the Duisburg shallow water towing tank. The tank 
was 10.1 m wide and the water depth was set at six values h*/l* = 0.333, 0.25, 0.208, 
0.167, 0.125 and 0.05 in the experiments. The ship model was free to heave and pitch. 
In our calculation, the model and the channel geometry is chosen to be same as in Graff 
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FIGURE 5. Wave patterns at F,, = 0.9, = 1 and F,,, = 1 . 1  for TSS model in case of h*/ /*  = 0.125 
at 7 = 10, where the viewed horizontal area is 30 x 10.1 mz and the vertical scale is exaggerated 
10 times. 

et al. (1964), but only three water depths h*/l* = 0.208,0.167 and 0.125 are examined; 
the towing mode is free. 

We are seeking a useful and reliable computational program for a ship in shallow 
water. So checking the theoretical predictions of wave resistance, sinkage and trim of 
the ship by comparison with Graff’s results is essential. These quantities are shown as 
functions of depth Froude number Fnh in figures 2 4  for the three water depths, 
respectively, together with the measured results of Graff et al. (1964). Owing to the 
generation of solitons, the resistance, sinkage and trim vary with time in a certain speed 
range, so their maximum, minimum and averaged values are indicated in figures 2 4  
by vertical bars with dots. The calculations show satisfactory overall agreement with 
measurements. 

Perspective views of the wave pattern for water depth h*/l* = 0.125 at Fnh = 0.9, 
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FIGURE 6. Time history of wave resistance, sinkage and trim for TSS model in case of 
h*/l* = 0.125 at three depth Froude numbers: 0.9, 1.0 and 1 . 1 .  

K h  = 1 and K h  = 1.1 are shown in figure 5 with the vertical scale exaggerated 10 times 
for clarity. The patterns in figures 5(a) and 5(c) have already developed to the steady 
state, while the pattern in figure 5(b) will still vary periodically, further generating 
solitons. For the same cases the calculated wave resistance, sinkage and trim varying 
with time are shown in figure 6. 

The experiment of GraR et al. (1964) is considered as a conventional shallow-water 
towing tank experiment. The longitudinal blockage parameter, i.e. ratio of midship 
sectional area to tank water sectional area, is about 10 times smaller in G r a f s  cases 
than that in Ertekin's cases. We have seen that the calculated soliton for Graff s case 
is smaller and flatter, which conforms to the conclusion of previous studies, e.g. Mei 
(1986), that the amplitude and the wavelength of the upstream solitons depend on the 
blockage parameter. Moreover, the speed range of soliton generation also depends on 
this parameter. As we see in figures 2-4, the depth Froude number range of 
unsteadiness is only about 0.95-1.06 in Graff s cases, that is, much narrower than that 
reported in Ertekin's experiment. 
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4.3. Wigley mathematical model 
Being identical to Millward & Bevan's case (1986) the model hull is given by 

f = ~ 1 - 4 9 ] [ 1 - ( $ ~ ]  ( - d * d z * d O )  (-; < 2 < ;), 
b* 

where I* = 1.905 m, b* = 0.238 m and d* = 0.095 m. The channel is 6.1 m wide and 
only one water depth l*/h* = 6 is selected for calculation. The model is kept fixed in 
Millward & Bevan (1986) and so is the calculation here. 

Our calculated results are shown in figure 7 along with the measured wave resistance 
of Millward & Bevan. By comparison with their figure 7, it will be found that our 
calculations are closer to the experiment than theirs in the near-critical speed range, 
presumably because their prediction is based on linear theory. 

1 -4i2 (z* > 0) 

5. Concluding remarks 
The theoretical model presented in this paper is correct to second order, because it 

takes the local wave elevation and the longitudinal disturbance velocity into account 
in the near field. It is not restricted to symmetric configuration of ship and channel. The 
computational technique used in efficient and of second-order precision. The results 
obtained agree well with ship model experiments. Several practical applications are 
being pursued. One is the extension to high-speed twin-hull ships by regarding each 
hull as moving off-centre in an imaginary channel. Another is hull-form optimization, 
i.e. determination of lengthwise distribution of cross-sectional area to yield minimum 
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wave resistance under suitable constraints. Further, the present model can be applied 
to the practical problem of an air-cushion ship in shallow water, which was also 
investigated by Ertekin et al. (1986) and Katsis & Akylas (1987) with shallow-water 
wave theory. Finally, it is noted that, although our work here is limited to the near- 
critical range, the KP equation can be modified for a wider speed range, which is as 
large as the Boussinesq equations hold for. It can be applied to more practical purposes 
without any numerical handicap. 
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